Glucocorticoid receptor is required for skin barrier competence.
نویسندگان
چکیده
To investigate the contribution of the glucocorticoid receptor (GR) in skin development and the mechanisms underlying this function, we have analyzed two mouse models in which GR has been functionally inactivated: the knockout GR(-/-) mice and the dimerization mutant GR(dim/dim) that mediates defective DNA binding-dependent transcription. Because GR null mice die perinatally, we evaluated skin architecture of late embryos by histological, immunohistochemical, and electron microscopy studies. Loss of function of GR resulted in incomplete epidermal stratification with dramatically abnormal differentiation of GR(-/-), but not GR(+/-) embryos, as demonstrated by the lack of loricrin, filaggrin, and involucrin markers. Skin sections of GR(-/-) embryos revealed edematous basal and lower spinous cells, and electron micrographs showed increased intercellular spaces between keratinocytes and reduced number of desmosomes. The absent terminal differentiation in GR(-/-) embryos correlated with an impaired activation of caspase-14, which is required for the processing of profilaggrin into filaggrin at late embryo stages. Accordingly, the skin barrier competence was severely compromised in GR(-/-) embryos. Cultured mouse primary keratinocytes from GR(-/-) mice formed colonies with cells of heterogeneous size and morphology that showed increased growth and apoptosis, indicating that GR regulates these processes in a cell-autonomous manner. The activity of ERK1/2 was constitutively augmented in GR(-/-) skin and mouse primary keratinocytes relative to wild type, which suggests that GR modulates skin homeostasis, at least partially, by antagonizing ERK function. Moreover, the epidermis of GR(+/dim) and GR(dim/dim) embryos appeared normal, thus suggesting that DNA-binding-independent actions of GR are sufficient to mediate epidermal and hair follicle development during embryogenesis.
منابع مشابه
Glucocorticoid receptor regulates overlapping and differential gene subsets in developing and adult skin.
We have previously shown that the glucocorticoid receptor (GR) is required for skin homeostasis and epidermal barrier competence. To understand the transcriptional program by which GR regulates skin development, we performed a microarray analysis using the skin of GR(-/-) and GR(+/+) mice of embryonic d 18.5 and identified 442 differentially expressed genes. Functional clustering demonstrated o...
متن کاملEpidermal inactivation of the glucocorticoid receptor triggers skin barrier defects and cutaneous inflammation.
The glucocorticoid (GC) receptor (GR) mediates the effects of physiological and pharmacological GC ligands and has a major role in cutaneous pathophysiology. To dissect the epithelial versus mesenchymal contribution of GR in developing and adult skin, we generated mice with keratinocyte-restricted GR inactivation (GR epidermal knockout or GR(EKO) mice). Developing and early postnatal GR(EKO) mi...
متن کاملPromoter-dependent synergy between glucocorticoid receptor and Stat5 in the activation of beta-casein gene transcription.
Steroid hormone receptors and Stat factors comprise two distinct families of inducible transcription factors. Activation of a member of each family, namely the glucocorticoid receptor by glucocorticoids and Stat5 by prolactin, is required for the efficient induction of the expression of milk protein genes in the mammary epithelium. We have studied the mode of interaction between Stat5 and the g...
متن کاملA glucocorticoid-resistant rat hepatoma cell variant contains functional glucocorticoid receptor.
The mechanism of glucocorticoid resistance was studied in a rat hepatoma cell variant (6.10.2) which contains low levels of glucocorticoid receptor. These cells seem to have lost glucocorticoid-induced transcriptional responses as measured by the induction of expression of stably integrated mouse mammary tumor virus gene and the endogenous tyrosine aminotransferase gene, as well as the transcri...
متن کاملPathogenesis of Atopic Dermatitis: Current Paradigm
Atopic dermatitis (AD) is characterized by skin inflammation, barrier dysfunction and chronic pruritus. In this review, recent advances in the pathogenesis of AD are summarized. Clinical efficacy of the anti-IL-4 receptor antibody dupilumab implies that type 2 cytokines IL-4 and IL-13 have pivotal roles in atopic inflammation. The expression of IL-4 and IL-13 as well as type 2 chemokines such a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 149 3 شماره
صفحات -
تاریخ انتشار 2008